Conclusion used in their respective reactions (2 molal), which

Conclusion As we look at the final graph in the processed data, excluding the experimental data for sucrose, the values experimentally determined are very similar to that of the theoretical change in boiling point. As we can see, the relationship between the difference in boiling point and the number of ions formed by the solute is clearly completely linear. The line of best fit (excluding the value of sucrose) has a slope of 0.9500, which is extremely close to 1, which would indicate perfect proportionality. Also the correlation between the data is 0.9995, which further indicates the validity and correlation of the data.Both sucrose and ethylene glycol stay as one compound when being dissolved as water, sodium chloride breaks down into two ions (Na+ and Cl-), and calcium chloride breaks down into three separate ions (Ca+ and 2 Cl-) However, because the mass of one mole of sucrose is so large, around 340 grams, I elected to only use one-tenth of that amount (1 molal) I used one-fifth of a mole of all the other compounds were used in their respective reactions (2 molal), which explains why their relationship is linear and why the theoretical change in boiling point of ethylene glycol is twice that of sucrose. Normally, the more mass of the compound used the more pronounced the effect on the change in boiling point would be; however, one needs to take into account the fact that only a certain amount of mass can be dissolved into 100 mL of water. I decided that 2 molal for most of the substances (1 for sugar) would be enough mass so that there was an observable difference in the change in boiling point, but not too much mass so that it would not dissolve completely.The equation for change in boiling point when adding a solvent is ?T = M*Kb*i, so we would indeed expect the boiling point to increase linearly, and the experimental values determined are indeed extremely close to the theoretical values (see summary table), so it is clear that, at least when the compounds break down into maximum three ions, the change in boiling point increases linearly to the number of ions formed by the solute when dissolved into the solvent. The absolute uncertainty for all the experimental values is ± 0.4K and when the percent error and percent uncertainty are calculated for every value the results are:Table to determine percent uncertainty and percent error for each soluteUncertainty and Percent ErrorSucrose (C12H22O11)Ethylene Glycol (C2H6O2)Sodium Chloride(NaCl)Calcium Chloride(CaCl2)Percent Unc26.736.420.013.3Percent error193.07.42.32.4% uncertainty = (0.4/1.5)*100% = 26.7Percent error = |experimental – theoretical || theoretical |* 100%= (1.5-0.512)/(0.512)*100% = 193%As we can observe in the table above, every single reaction (except for the sucrose one) contained mostly random errors because the percent uncertainty is so much smaller than the percent error for those data points. However, because the percent error for the value obtained for the change in boiling point of sucrose is so much larger, nearly eight times larger, this part of the experiment must have contained mostly (large) systematic errors, which will be discussed in the evaluation.  It would be interesting in further experiments to evaluate if this linear trend (between the change in boiling point and number of ions formed by the solute) continues when the compounds used for solutes form even more ions when broken down. This trend should be evaluated for compounds that break into at least five, six, and maybe even seven ions. Substances that could be used are AlCl3 (4 ions), Al2(SO4)3 (5 ions), or Mn3N4 (7 ions).Evaluation The most evident problem in this lab are the results obtained from the reaction with sucrose. All of the values are nearly triple what they are supposed to be. This most plausible reason for this is that not all of the nearly 35 grams of sucrose were completely dissolved and therefore more temperature was required to bring the solution to a boil. This is a systematic error that is specific to the sucrose trials. In order to fix this, we could use a larger amount of solvent, say 150 or 200 mL of water instead of 100 mL, this would allow for the sugar to completely dissolve. Given this would decrease the molality of the solution and there might not be as pronounced an effect as the theoretical model predicts, but I hypothesize that it will be much closer than the values obtained in my trials. In order to decrease random error throughout the entirety of the experiment, we could use 500 mL of water and 10 molal of the substance. Since throughout the experiment I was measuring very small amounts of mass (of the different substances) it was easy to accidentally add a little more mass and get a much greater mass than desired, and one that was quite a high percentage of the total mass I wanted. If we were to increase the amount of solvent and solute it would inevitably reduce random error as any human mistake would be less significant, proportionally, to the quantities needed for the adjusted experiment.  The mass of water (H2O) should have been weighed not taken from volume as at different temperatures density changes (colder water is more dense than hotter water). This would change our mass and it would therefore also change the concentration of the solute in the solvent, meaning that the solute effect on the boiling point of the solution would be lower (if water is cool) or higher (if water is hot) as proportionally it is less or more significant to the total mass of the solution.Risk AssessmentOne should always wear gloves, lab coat, and goggles to protect from any accidents (glass shattering or water bubbling over). Also a waste bucket should be used to dispense of all the solutions used/made in the experiment.The only real risk in this experiment is the potential danger of the solution bubbling over the edges of the flask used to contain it when brought to a boil. First of all, to prevent this one should simply keep a close eye on the solution being brought to a boil, and even if the graph does not show that the temperature is beginning to plateau, and turn off the heat or remove the solution if it appears that it may boil. However, if for some reason the liquid does boil over, make sure to have paper towels around the heating plate and a “heat glove” ready to remove the flask from the heating place as soon as possible. BibliographyHessy Taft, personal communication, April, 2017Tingare, Ganesh. “Why Does Adding Salt Increase the Boiling Point of Water?” Linkedin, 5 Feb. 2017, www.linkedin.com/pulse/why-does-adding-salt-increase-boiling-point-water-ganesh-tingar.IB data booklet